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An investigation is made of the stability of the shape of a moving planar interface between the liquid
and solid phases in the freezing of a dilute binary alloy. A nonlinear model is used to describe an experi-
mental situation in which solidification is controlled so that the mean position of the interface moves with
constant speed. The model postulates two-dimensional diffusion of solute and heat such that:

. Convection in the liquid is negligible.

. Diffusion of the solute in the solid is negligible.

. Solute concentration in the liquid is small.

. The effects of interface attachment kinetics are negligible.

. The extent of the liquid and solid phases is infinite.

Cs = Cy, where Cy(Cy) is the specific heat per unit volume of the solid (liquid).

. (D|Dy) < 1, where D is the diffusion coefficient of the solute in the liquid and Dy, is the thermal
diffusivity in the liquid.

8. G ~ Gy where G is the imposed temperature gradient in the liquid and G is the critical value of G
at which linear theory predicts the onset of instability.

The analysis is expected to be asymptotically valid as G — G. It is found that the interface can be
unstable to finite amplitude disturbances even when linear stability theory predicts stability toinfinitesimal
disturbances. Further, cellular structure can be anticipated for certain ranges of parameter values.
These results are in accord with relevant experimental evidence.
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1. INTRODUCTION AND FORMULATION

The classical subject of linear stability theory analyses disturbances to an equilibrium state by
neglecting all terms except those which are linear in the perturbations. The resulting class of
eigenvalue problems has been under intensive study for many years. Physically, the main fruits
of linear theory are the determination of critical conditions at which instability first occurs and
the determination of the overall size of disturbances which are most likely to be the first to grow.
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352 D.J.WOLLKIND AND L. A.SEGEL

If the spatial pattern of the growing disturbance is to be predicted, if the effect of large distur-
bances is to be estimated, or if the long-time behaviour of growing perturbations is to be ascer-
tained, then nonlinear terms must be taken into account. The required nonlinear stability theory
of phenomena governed by systems of partial differential equations has been the subject of
increasingly vigorous investigation in the past two decades. Perhaps the bulk of research has been
directed toward understanding certain prototype problems in hydrodynamics. This work has
been surveyed by Segel (1966).

Investigators of problems in nonlinear hydrodynamic stability are aware of the fact that their
results can be adapted so that they apply to a broad class of physical problems. A member of this
class was identified at the conference at which Segel’s survey was presented when Kirkaldy (1966)
pointed out the similarity between patterns in Bénard convection and cellular patterns observed
when an alloy is solidified in a temperature gradient. It is a stability analysis relevant to the latter
problem which is the subject of this paper. We are able to carry the investigation far enough to
show the unity which underlies the fluid mechanical and metallurgical problems and to illustrate
the possible importance of nonlinear effects in solidification instabilities. Such instabilities are
of considerable technological importance (Frank, Mullin & Peiser 1968).

Our analysis also provides a concrete discussion of nonlinear effects in a symmetry breaking
instability occurring in a dissipative system. Turing (1952), Gmitro & Scriven (1966) and
Prigogine & Nicolis (1967) have stressed the importance of such instabilities, particularly in
chemical and biological contexts. The metallurgical instability investigated here, with con-
vective terms omitted as relatively unimportant, serves as a good model for pattern-forming
instabilities both because it is driven by a ‘surface engine’ and because diffusive transport is
more important than convective transport. Consequently the study reported here may be of
interest to some who have no direct concern with the metallurgical problem.

We begin (below) with a formulation of the problem which is a slight generalization of that
used by earlier authors. The equilibrium solution (§ 2) describes the uniform advance of a planar
interface of solid alloy into the molten metal. Using this solution, we discuss with some carein § 3
the selection of dimensionless variables which seems most appropriate to this complicated
problem. (In the present formulation, the phenomenon depends on seven dimensionless para-
meters.) We proceed in § 4 to a linear stability investigation.

Up to this point we are largely repeating earlier work, although we do include some details
which were not spelled out previously, such as a proof of the ‘exchange of stabilities’ which has
heretofore been assumed. Our presentation takes advantage of experience developed by many
workers in hydrodynamic stability to present the results in a form which seems more compact and
more revealing than forms used heretofore by theoretical metallurgists. In any case, the linear
analysis is a necessary preliminary to the nonlinear theory which is based upon it.

Section 5 deals with the adjoint problem whose solution is needed for the nonlinear analysis.
Formulation of this problem is simple in principle but turns out to require some sophistication.
Section 6 deals with the nonlinear analysis which shows that the amplitude of an initially sinu-
soidal perturbation is governed by a certain nonlinear ordinary differential equation, the
amplitude equation. Those interested in details are referred to the general literature or to
Wollkind (1968) where the analysis is presented more fully, but we have tried to outline enough of
the calculation so that the general reader can have confidence in its results. We can thus turn in
§ 7 to a study of the amplitude equation which shows that cellular patterns are to be expected for
certain ranges of the governing parameters. For other ranges the interface is unstable to sufficiently
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NONLINEAR STABILITY ANALYSIS 353

large disturbances in spite of the fact that stability is predicted by linear theory. We suggest that
dendritic instabilities are perhaps to be expected in these ranges. We conclude (§8) with a
discussion of our results.

We now turn to the detailed formulation of the problem. We wish to investigate the stability
of the shape of 2 moving planar interface between the liquid and solid phases in the unidirectional
freezing of a dilute binary alloy. We use a nonlinearized version of a mathematical model
originated by Mullins & Sekerka (1964) to describe an experimental situation in which solidi-
fication is controlled so that the mean position of the interface moves with a constant speed
(Sekerka 1968). Our main purpose is to use a nonlinear stability analysis in order to explain more
fully the occurrence of both the hexagonal cellular and dendritic structure of the interface which
can exist under the appropriate imposed temperature gradients, and the imposed constant rate
of solidification.

The mathematical model is developed as follows. Consider a two-dimensional situation in
which a stationary or laboratory coordinate system, denoted by (%, 2), is such that the & axis
coincides with the initial mean position at time 7 = 0 of an interface, which satisfies for time
f > 0, the equation 2 = Vi+ {*(#,). The mean position of this interface is assumed to be moving
with a constant speed V in laboratory (%, 2) coordinates, so that

to lowest order (see § 6).
In writing the equations we shall use the following nomenclature:

V constant mean velocity of the interface,

C concentration of the solute in the liquid,

T(T") temperature in the liquid (solid),

Z = Vi+{*(%,1) equation of the liquid/solid interface having mean position z = V7,

D diffusion coefficient of the solute in the liquid,
Din(Dy,) = Ki,C; (KgCgY)  thermal diffusivity of the liquid (solid),
K (Ks) conductivity of the liquid (solid),
Cy(Cs)  specific heat of liquid (solid) per unit volume,
Ty the melting temperature, in degrees Kelvin, of the pure solvent,
r oL capillary constant,
o the specific liquid/solid interfacial free energy,
L latent heat of fusion per unit volume,
K distribution coefficient given by the ratio of the equilibrium concentration of solute on
the solid side of the interface to that on the liquid side,
m = dT3[0]/dC slope of the liquidus line on the phase diagram,
n unit normal to the interface, Z = Vi+ {*(#,7), pointing into the liquid, and
#(%,7)  the component of the velocity of the interface in the direction of n.
The governing differential equations are (Mullins & Sekerka 1964):
For z > Vi+ {*(%,7) (in the liquid):

DV2C (%, 2,1) = [oC|ot] (%, 2,7), (1.1a)
DnV2T (%, 2,1) = [oT)of] (%, 2,©), (1.156)
which represent diffusion of solute and heat in the liquid in the absence of convection (see below).

33-2
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354 D.J. WOLLKIND AND L.A.SEGEL
For 2 < Vi+{*(%,7) (in the solid):
D VET (3,2,7) = [0T"/68] (% 2,7), ' (1.2)
which represents diffusion of heat in the solid. In this model solute diffusion in the solid is

neglected and in order to determine the composition (Cg) of the solid solution adjacent to the
interface, one uses the relation

for z=Vit+¢* (%10, Cg= KC.

From the outset, we have neglected convection in the liquid phase. Convection will inevitably
occur unless the temperature gradient is normal to the interface and parallel to the gravitational
field and its influence is certainly of interest (Carruthers 1968; Hamalainen 1968). If the molten
metal lies above a horizontal interface, however, the liquid phase is gravitationally stable and
only a weak motion is expected, in response to the surface-driven instability. There is little doubt
that neglect of convection is justified in an attempt to determine the dominant nonlinear effects
in this situation. It is probable that convection will not play a decisive role in other arrangements
of constrained crystal growth either, for the morphology of the unstable interface seems largely
independent of its orientation with respect to the gravitational field.

In our analysis we explicitly use the following boundary conditions, a nonlinearized alteration
of Mullins & Sekerka (1964) [the chief change being the presence of 9/dn instead of 9/0Z in (1.3¢)
and (1.3d)]:

For z = Vi+{*(#,) (on the interface):

T=T, T=mnC+Ty+TyIHA+EE)H, (1.3a,b)

oT" oT

. oC
i(&%1) L = KS%‘KL%:

o(%,7) (K—1)0~=D5i’ (1.3¢,d)
In the above (1.3a) represents the continuity of temperature at the interface, while (1.35)
describes the alteration of the temperature of that interface, T, from the equilibrium melting
temperature of the pure solvent, Ty, due to the presence of solute and the curvature of the

interface itself. One can say that =~ _ N
T =Ty[Cl+ ATy +6T,

where T3;[C] is the actual equilibrium melting temperature of a planar interface as a function of the

solute concentration of the interface; ATy is the correction to that equilibrium melting tempera-

ture due to the fact that the interface is curved; and 6 T is the term that accounts for the fact that

the interface temperature must depart from the equilibrium melting temperature because mole-

cular attachment at the interface (interface attachment kinetics) is a ‘non-equilibrium’ process.
For a dilute alloy, taking the first two terms in a Taylor series

TulC] = T[0] +{dT3;[0]/dC} C = Ty +mC.

Since ATy = Ty 'k where « is curvature and, further, since 6 7"is usually very small for metals
and alloys and can be neglected (Tarshis 1967), equation (1.35) now follows directly. When we
use a general balance equation from continuum mechanics for a surface of discontinuity
(Wollkind 1968) or a pill box type argument, (1.3¢) and (1.34) follow from conservation of heat
and solute respectively at the interface. The right-hand sides of (1.3¢) and (1.3d) represent net
flux through the interface while the left-hand sides represent heat released by melting and solute
rejection at the interface, respectively. The derivation of (1.3¢) gives rise to a term, #(Cs — Cy)) T,
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NONLINEAR STABILITY ANALYSIS 355

where Cg(Cy,) is specific heat per unit volume in the solid (liquid) phase. Since for such an alloy
Cs =~ Cy, this term has been neglected.
For an interface of the form presented, n and #(%,7) are given by

n= (=0, (+5)H and H(%7) = (V+G) (1 +52)H (1.4)

If we use (1.4) and the fact that &(C, T, 7")/on = V(C, T, T") .n, and multiply through by
(1+ &%), boundary conditions (1.3¢) and (1.3d) transform into

Vet -7 |Ks (2—5— ) -k, (%Zf-g%%)] (1.30)*
and (V+&) C(K—1) = D(SS«@%‘%?). (L3d)*

2, THE STEADY-STATE PLANAR INTERFACE SOLUTION

There exists a steady-state solution of (1.1) and (1.2), depending only on z*, where

z¥ = 2-Vi,

and satisfying boundary conditions (1.3*) for a planar interface, z* = ¢*(&,#) = 0. This solution

is given by 5 :
C = G¥(z%) = Gyt (GyD[V) (1 —exp{~ (VID) %)) (2* > 0); (2.10)
T = T§(z*) = Ty+ (G*Dw|V) (1 —exp{—(V/Dw) z*}) (z* > 0); (2.1d)
T = To*(z*) = Ty+ (G'*Diy|V) (L —exp{— (V/D{y) z*}) (z* < 0); (2.1¢)

where the various quantities in (2.1) are related by
Ty=mCy+Ty, KsG'*—K G*=VL and V= DG)/C(K-1), (2.2)

with G*, G'*, m(K—1) > 0.

In an actual experiment the extent of the liquid and solid phases is naturally finite. A simpli-
fying assumption in this model is that z* extends to positive and negative infinity. The instability
to be considered depends crucially on conditions at the liquid/solid interface but should be
virtually unaffected by conditions far from that interface.

Note that as z* — oo, C§(z*) - G+ Gy D|V = KC, and T§(z*) - T+ G*Du/V but that as
z* > —o0, Tg*(z*) - — oo, which is a consequence of the simplifying assumption that the extent
of the phases is infinite (see figure 1). This solution will be referred to as the steady-state ‘planar
interface’ solution. It is the stability of ithis solution, with which we are concerned. In order to
investigate this stability we shall consider solutions of the form

B(%,24,1) = ¥ (2*) +8,(%, 2%, 1), (2.3)
or equivalently C(&, z*,1) Ci(z*) Ci(%, z*,1)
T (%, z*,1) | T (z%) T\(%, z*,)
T'(&,z%,0) | | To*(z*) Ti&z%,0) |’
&*(&1) 0 S{CA)

where @ (z*) is the planar interface solution and %, (%, z*, ) is a small perturbation. By examining
the behaviour of o,(%,z*,f) as { - oo for various ranges of the relevant parameters, we can
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356 D.J.WOLLKIND AND L.A.SEGEL

determine the stability or instability of the planar interface solution. If lim &,(%, z*,7) = 0, we

f—>oo

say this solution is stable to perturbations of the type ¥, and if %im ¥,(%, z*,1) - o0, we say it is
—>00

unstable. It is also possible for lim &, (%, z*,1) = &f (%, z*), in which case the planar interface
f~>00

solution is unstable to type @, perturbations but can transform into a finite amplitude equilibrium
solution, 9, = T§ (z*) + TF (7, z*).

G
w C=C

KC,

Z¥ e

T2 =Ts¥(z*)

Ficure 1. The planar interface steady-state solution of (1.1) to (1.3). (a) The solute concentration o] (z*) in the
liquid. The planar liquid-solid interface has equation z* = 0. (b) The temperatures 7” and T of the solid
and liquid respectively.

We have deferred until now a discussion of the proper boundary conditions to be applied in
the liquid and solid phases as z* — + co. We expect that far from the interface the influence of the
shape of that interface on the solute and temperature fields will become negligible. This means

that C—Ci(z*), T Ti(*) as z*—>oo;}

2.4
T — Ty*(z) as z* > —o0; (2:4)

where C¥(z*), Ti (z*), and Ty*(z*) comprise the planar interface solution given in (2.1).

Equation (2.4) is the proper boundary condition to be applied at |z*| =00, and along with (1.1)

and (1.2) and boundary condition (1.3*) constitutes the mathematical formulation of the

problem. Also note that for solutions of form (2.3), condition (2.4) implies that
Ci,—-0, T,—0, as z*-> +oo;}

- (2.5)
T1—>0 as z*¥—> —o0,
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3. SCALING AND NON-DIMENSIONAL VARIABLES

We now discuss the process of scaling as a prelude to the introduction of non-dimensional
variables into the governing equations and boundary conditions. Our discussion briefly spells
out some matters which are more or less implicit in the usual scaling procedures.

Consider a set of differential equations with dependent variable f*(z*), where z*, the inde-
pendent variable, is restricted to an interval I*, which may be finite, semi-infinite, or infinite.
We wish to find an f* scale, F, and a z* scale, S, so that if we define the non-dimensional scaled
variables fand z by

z =8"1z*  f(2) = F1f*(Sz2), (8.1a,b)
then |f(2)|max =1 and |df(2)/dz|max =1 for zel, (3.2a,b)
where z is in the interval 7 if and only if z* is the interval I*. Now

df*(z*) _ Fdf(z)
*( %) — =
f (Z ) —Ff(Z), dZ* - S dZ b (3'3a:b)

so that this change of variables replaces f * and df*/dz* by fF and FS—(df/dz) whose maximum
absolute values are given by the constant factors /' and FS$—! respectively. Hence once all the
terms in a set of equations are scaled in this preceding manner, one can compare the relative size
of each term in a given equation by comparing the relevant constant factors (for subtleties see

Lin & Segel 1971).

From the above F = | f*|max = max | f*(z*%)] (3.44)
z*in I*
F_ldf* df*(z*)

Thus one makes the following definitions for the scales F and §:

%
F = If*lmax and § = Ia%{]a!;—s";nax. (3.50, b)

If another function of z*, say g*(z*), also appears in the equations, then S'is defined as follows:

: * max * max
§ = i R e (-0
In general, higher order derivatives, if they appear in the equations, should be considered in the
determination of § but in the problem under consideration no alteration of § is obtained by
doing so.

Let us apply the process of scaling just described to the set of equations and boundary condi-
tions, denoted by (1.1), (1.2), (1.3*), and (2.4). The scaling technique developed above assumes
knowledge of the very solution we are trying to find. But since only order of magnitudes are
required, certain general considerations often suffice to give the required estimates. For example,
because (2.3) is a perturbation solution it is reasonable to assume that its dependent variables are
of the same magnitude as the dependent variables of the basic solution. We then use this basic

solution, C = C¥(z%), T= T (%), - Tg*(z*) and {* =0, (3.7)

where Cg (z*), T§ (z*) and To* (z*) are given by (2.1) and (2.2), in order to calculate the relevant
scales and introduce non-dimensional variables.
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358 D.J.WOLLKIND AND L. A.SEGEL

Recall from § 2 that in the limit as z* - — o0, T¢* - — 00, which was a consequence of the
simplifying assumption that the extent of the solid phase is infinite. For this reason one cannot
consider the T'g*(z*) solutionfor the purpose of introducing scales. It will now be assumed thatthe
temperature scale for 7 (z*) is also the temperature scale for 7¢*(z*). Since 7§ = T at the
interface, one expects this to be a good approximation near the interface.

To find &, ¥ and 7, the length, concentration, and temperature scales respectively it is
necessary to calculate various quantities which will be sketched in detail for €. In particular

|Co'(2*) | max = max |Cy+ Cy(K —1) (1 —e= VD) | = C) = CF(0), (3.8a)
Z*>0
* (%
and dCo (%) = max |Cy(K—1) V|D e~¥VID#*| = Cy(1-K) V|D. (3.80)
dz* max 2%>0
|Co | max Cy _ DIV
Hence dCF [dz*[max ~ Cy(1—K) V]D =~ 1=K (3.9)
. e | 76| max
Similarly | 76" | max = a3 Ty and s — = ay D/ V, (3.10)

|[d 7§ /dz* [ max
where «; , = O(1). Since O(1) factors can be neglected in the determination of scales one now
chooses &, € and .7 as follows:

& =min{D|V,Dw|V} = D|V, € =Ci0), T =Ty (3.11)
The length scale, &%, was chosen as above since
DV =0(10*%cm and Du/V=0(10%cm (3.12)

for typical alloys (Mullins & Sekerka 1964).

We have already made the claim that these various scales are valid for the dependent variables;
thus the scales, C¢*(0) and Ty respectively, developed for &, can be applied to &. That the length
scale of @§ can also be used for ¥ is not obvious due to the presence of various perturbation
gradients. As a partial justification for this we note that in the Bénard problem, which deals with
a buoyancy-driven convection layer confined between parallel plates, and the Taylor problem,
which deals with flow between rotating concentric cylinders, the wavelength of the perturbation
disturbance is of the magnitude of the gap width (Segel 1966). Also in the work of Scanlon &
Segel (1967), concerning a surface tension driven semi-infinite convection layer, the perturbation
wavelength is of the same magnitude as the length scale given by the temperature gradient of the
basic solution.

We then assume that the time scale 7 is given by

T=%|V =D|V? (3.13)
and the length scale, 0, for the interface is defined by
8 = max |{*(%,7)|. (3.14)
We now introduce the following non-dimensional variables and parameters:
¢ T, T *
C=€0>F('05> T_r]_-vMy T _7]71\;3 §—1§73
(%, z%) 7 ) D
S\ V) — e o 15
w2 ="py L= piye o F Dy (3.13)
_me(0) I 5
M = B v = DV and n = K
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4. THE LINEAR STABILITY PROBLEM

Using the dimensionless variables and parameters introduced at the end of the last section
(see (3.15)), the basic equations transform into the following:
For z > €{ (in the liquid):

V2C+aCloz—oC|ot = 0, (4.1a)
V2T = 0. (4.1b)
"For z < € (in the solid): VT = 0. (4.2)

For z = €{(x,t) (on the interface):

T=1+MC+yel,,(1+e2))-3, T=T, (4.3a,b)
oT" 8T oT" oT
n oz —’a}‘— gx (ﬂ—‘é‘a—c——a> = O, (4.36‘)
oC oC
E—eg’wg = (K-1)C(1+¢€g). (4.3d)
For |z| - c0: C—>Cy(z), T->Tyz) as z-> o0, ad
T - Tyz) as z—> —o0, } (4.4)

where Cy(z), Ty(z) and Ty(z) come from the planar interface steady-state solution for this system,
depending only on z, and satisfying boundary condition (3) for the planar interface z = ¢{ = 0.

Thus Co(z) =1+ (K-1)(1—e?),

Ty(z) = 1+ M + Gz, (4.5)
Ty(z) =14+ M+Gn 'z

In the above we have set the dimensionless parameter £, which typically has the very small value
of 10-%, equal to zero.

This approximation certainly does not alter any of the fundamental results of the stability
analysis that follows and even its quantitative effect is almost always extremely small. (See also
remarks under (4.15).)

Proceeding according to the manner outlined in § 2, we investigate the stability of the planar
interface solution by considering solutions of the form

v (%, 2,15 €) = 0y(2) +01(%, 2, 85 €), (4.6)
or equivalently C(x,z2,t;€) Cy(2) Ci(2)
T (x,z,t; €) Ty(2) Ii(2)
= + dof, 4.7
T zte |~ | Taw |7 Ti) [ )
e§(x, 15 €) 0 &

where v,(2) is the planar interface solution given by (4.5).
We now substitute the vectors of (4.6) and (4.7) into the system (4.1) to (4.4). Then, expanding
boundary condition (4.3) in a Taylor expansion about z = ¢{ = 0 and neglecting all terms of

34 Vol, 268, A,
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O(€?), we obtain the following linear problem for v, (z) = [Cy(z), T;(2), T1(2), ] upon cancellation
of the common factor € cos wx e%t:

[D?—0?*+D—q,]Ci(2) =0, [D*-0?]T3(2) =0 (z>0);
[D2-w?] Ti(2) =0 (z< 0; D =d/dz). } (+:8)
The boundary conditions at z = 0 are

T,(0) = MCy(0) + &[G + Py — M(K—-1)] = 0,

T,(0) - T3(0) + & G(n—1) [n = 0, (4.9)
nDT7(0) —DT;(0) = 0,

DC,(0) - (K—1) Cy(0) + (1 —=K) (K+ay) & = 0.

As |z| - o0 we require Ci(z) >0, Ty(z) >0 as z-— oo;} (4.10)
Ti(z) >0 as z-> —oo.

This is an eigenvalue problem with eigenvalue, 4, and corresponding eigenvector, v,(z), where a,
is the growth rate. We say that the planar interface solution is stable, unstable, or neutrally stable to this
type of disturbance according to whether lim e%* — 0, 0o, or 1. This in turn depends on the sign

t—o0
of Re (a,) being less than, greater than or equal to zero. The particular disturbance considered is
most likely to lead to instability (see § 8).
Equations (4.8) to (4.10) possess solutions of the form
(G, Th, T1] (2) = [4y, By, Ci] exp (—[mg, my,mo] 2), & = Dy, (4.11)
where 4;, B;, C; and D, are constants. We obtain, on substitution into (8) and cancellation of
common factors that

my =%+ (}+w+a,)t
0o =%+ 0) ,} (4.12)

my = |o|, my=—lol,

where we have chosen signs in (4.12) so that (4.10) will be satisfied. Substituting (4.11) into (4.9)
and making use of (4.12) we obtain:

MA,— B, +D[M(K—-1)—w?*y-G] =0,

B,—C,+D,Gn—1)[n=0,
B,+nC, =0,
[my+ (K = 1)] 4, + (K1) (K+a,) D, = 0.
This is a system of four linear homogeneous equations in four unknowns and if it is to have a

non-trivial solution the determinant of the coefficients must vanish. From this condition, after
some algebra, we find

(4.13)

ay = (T — pow?) g(w? ay) — K, (4.14)
where T=1-W, W=2G/(14n) M(K-1), g=vy/MK-1),
g(@? ap) = my(w?% ay) + K—1 = K— §+ (} +0?+a)t.
(The above dimensionless parameter 7" should not be confused with the temperature.) The
corresponding components of the eigenvectors are

C(2) = (1= K) (T— fuo?) Dexp{~my(w,a) 2}, & = D, (4.15)
Te) = il ODexp (ol 3, Ti(2) = s GDexp o] 2,

where D is a constant.
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As mentioned, to determine stability we must know the sign of Re (a,). We first note, as
explained in some detail in Wollkind (1968), that by taking the small parameter £ to be zero in the
basic equations we have neglected strongly stable roots of a, for which Re (¢,) < 0 and |g,| ~ £
as§ — 0. Since we are concerned in linear theory with determining the critical conditions at which
instability first occurs and in nonlinear theory with the long-time behaviour of the corresponding
critical disturbances, we are justified in neglecting terms proportional to £ in the basic equations.

Next we prove the so-called principle of exchange of stabilities for this problem, i.e. we show that in
(4.14), Re(ay) = 0 implies Im (a,) = 0. Writing

ay, = Re(a,) +iIm (ay) = af® +iad, (4.186)
we substitute (4.16) into (4.14), assume a® = 0, and obtain

iaf) = (T—Bo?) [K =3+ (} + 0? +iad)¥] - K. (4.17)

(@)

®
- (0,1) Reqy<0 stable
t
=
W ao(f)=0: W=%(0)2, )
B
! A
[}
W T g =0 fi<h
! L W=Wc (0 8)
(‘)C(z) wc(l) R
@~ —>

F1GURE 2. (a) A plot of T' = 1—2G/(1+n) M(K—1), a dimensionless combination of temperature and concentra-
tion gradients, versus w2, the square of the wavenumber of the disturbance. From the linear stability analysis,
a, = 0is the marginal stability curve separating the unstable region, g, > 0, from the stable region, Rea, < 0.
(5) A plot of W = 2G[/(1+n) M(K—1), a dimensionless combination of concentration and temperature
gradients against w2. The critical value of the parameters and the marginal stability curves are depicted for
two values of .

Transposing the relevant terms, squaring out, and equating the real and imaginary parts of
the resulting expression we find

aP[(po2+ W) 2K+ T—- puw?)] = 0, (4.18)
[K+(T=po?) (3—-K)]*—(T-fo?)? (3 + 0*) = a§O. (4.19)
Since the factor multiplying a® in (4.18) is not identically equal to zero this implies

ad = 0.

34-2
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362 D.J.WOLLKIND AND L. A.SEGEL

The existence of an exchange of stabilities means that we can set ¢, = 0 in (4.14) in order to
investigate neutral stability. Doing this we arrive at the neutral stability condition

T(0?,0) = To(0?) = fo*+K/g(w? 0), (4.20)
where 8(0%0) = K—}+ (3 + o)
To(w?) has the properties that

To(0) =1 and Ty(w?) - fw? as w?-—>o0.

0% —»

F1cure 3. The region in the T—w? plane of complex a,. (The locus is designated by shading.)

The T against w? curve has an absolute minimum at © = oy where wg, the critical wavenumber,
is such that ’
d7g 1 K
do? K 2¢%($, 0) (1 +wg)t

or ' wg=0 if g>1/K.

(0) =0 if f< which implies f = (4.21)

Corresponding to wg is an associated critical value of the parameter T denoted by Tj (see
figure 2) such that
To(0}) = To = 1 =W = fo}+ K/g(wt, 0). (4.22)
We note that 0<Ty<1 and O<Wy< 1 ‘

In the plot of T against w?, the neutral curve or curve of marginal stability of (20) T" = Tg(w?),
on which a, = 0, separates the region of instability where g, > 0 from that of stability where
Rea, < 0. In the region where g, is real, ¢, = a(T—Tg) + O(T—Tg)?, o > 0. Observe that g, is
complex only in that region of the 7'— w? plane where

P-<T—-pwt<Pt, T>pw? and ?< K2
Here P* = 1—2K + 2(K2— w?)? (see figure 3). In this region Rea, < 0 (Wollkind 1968).
~ Note from figure 2 that for 7" < T, there exist no wavenumbers, o, such that ¢, > 0 and that
for T > Tg there exists a band of such wavenumbers corresponding to growing disturbances.
This means that for T > Ty or W < W}, one has instability and for 7" < Ty, or W > W one has
stability.
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Since £ determines w¢ by relation (4.21) and wg determines W by relation (4.22) we can
k of
P Wolwd(8)] = We(6)- (4.23)

W = 2G[p(1+n), where p = M(K—1) = mCy(K—1)[Ty; > 0, is a dimensionless combination
of temperature and concentration gradients. £ is equal to y/p, where y = VI'/D is a dimensionless
velocity of solidification. For a given alloy of a specific concentration, C,, the only variable

factors involved are G, the temperature gradient in the liquid, and y. We speak of a critical value
of G, Gg, such that

Go = (1+n) pWo[2,  Go[we(y]p)] = (1+n) pWo[wE(y]p)1/2 = Go()- (4.24)
Since in terms of G we have stability for G > Gy and instability for G < Gg, the curve G = G(y)
is one of marginal stability in the plot of G against y represented in figure 4. Note that for
B =7[p = 1/K, Gy = 0 and we have stability for any G > 0. Thusfory > y* = p/K we have what
metallurgists call absolute stability.

G=4(+n)p

G—

r*=plx

Y —=

Ficure 4. A plot of the dimensionless temperature in the liquid against y = VI/D, a dimensionless rate of
solidification. G = Gy(y) is the curve of marginal stability and y* = p/K is such that for ¢ > y* there is
stability for any G.

5, THE ADJOINT PROBLEM

Before we can consider the nonlinear stability problem, it is necessary to pose and solve what is
called the adjoint linear eigenvalue problem (Ince 1956). Owing to the presence of a, in boundary
condition (4.9), we first put the linear eigenvalue problem, (4.8) to (4.10), in the form

Z[o(2)] = ¢y A[0(2)], (5.1)

with boundary conditions on o(z) such that
B[v(0)] =0, v(z) >0 as |z|—>co. (5.2)
Z[v] and .#[v] are to be vector valued operators; v(z) is to be a vector containing C,(z), Tj(z),

T'i(z) and §;; and B[v(0)] is to be a vector operator evaluated at z = 0 which is independent of the
eigenvalue a,. Once we have done this we shall formulate the adjoint problem

LHot(2)] = by M0 (2)], (5.3)
with boundary conditions on v+(z) such that
Bt[v+(0)] =0, 27(z) >0 as |z| > o0. (5.4)
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364 D.J. WOLLKIND AND L.A.SEGEL

ZLHot], #+[vt] and Bt[vt] are to be defined such that for all v and v+ satisfying boundary
conditions (5.2) and (5.4) mentioned above:
(Z[o(2)], v4(2)) = (v(2), ZH[2*(2)]), (5.5)
(A[v(2)], v*(2)) = (v(2), A*[v"(2)]), (5.6)
where, for the purpose of normalization, we take the common value of (5.6) to be 1; v+(z) is to
be a vector containing Ci (z), 71" (z), T (z) and {f;and ( , )isanappropriate inner product.
F+ and A + are the adjoint operators of & and A respectively.
In order to put the linear problem in the form (5.1) and (5.2), we define

(D?—w?+ D) Cy(2) Ci(2)
(D?— w?) 1,(2) 0
Z[v(z)] = | (D*—?) T5(2) , M[v(z)] = 0 (8.7)
nDT1(0) —DT,(0) 0
DC,(0) — (K1) G1(0) —K(K-1) & (K-1)&

for v(z) = [Cy(2), T1(2), T1(2), &, A], where 4 is a constant to be determined. (Note: it is not
necessary to distinguish between row and column vectors as they will be used interchangeably.)

We define B[v(0)] such that

_ [13(0) = MC,(0) + &[G+ 0Py - M(K-1)])
1000 = {10y 7300+ 10— 1) }-o &)
By v(z) - 0 as |z| - c0 we mean
Ci(2),Ty(z) >0 as z— oo;} (5.9)
Ti(z) >0 as z-—> —oo. '

In deciding which boundary conditions contain a term proportional to 4, and hence should be
included in .Z and .# rather than B, it is essential to consider the £-dependent problem and
then let £ - 0 (Wollkind 1968).

We use the inner product, (U, V), of

U = [u,(2), ua(2), u5(2), s, 5]
and V = [01(2), v2(2), v5(2), v V5]
defined by
@ 0 .
(U, V) = f [u1(2) v1(2) +uy(2) vo(2)] clz+f ug(2) vg(z) dz + u, v,y + uzv;. (5.10)
0 —a0

We assume vH(z) = [Cf (2), T (2), T17(2), 41, Bl
where B is another constant to be determined. Then on inspection of (5.5) and (5.6) it becomes
apparent that we should pick

B=Ci0), 4=G0), Bl =] A0 T ] -0, (5.11)

(D?—w?—D) C{f (2)
(D*—o?) Ty (2)
LHot] = | (D*~o?) T1*(2) ;
DT5(0) [M(K ~ 1) — G —yu] — DT5+(0) [M(K ~ 1) — Gln—ya?] - K(K~1)C{ (0)
DC{ (0) — KC{f(0) + M[DTi (0) —DT7+(0)]
(5.12)
and MH[w] = [CF(2), 0,0, (K —1) C(0), 0]. (5.13)
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We can now formulate the adjoint eigenvalue problem of (5.3) and (5.4), which is
LHvt] = byMH[vt], Bt[o+(0)] =0, o7(z) >0 as |z| > oo;
or (D*—w?—D—1b,)Cf(z) =0, (D2—w*)Ti(z) =0 (z>0); (5.14)

(D?—w?) T1H(2) =0 (z<0); (5.15)
with boundary conditions
TiH(0)+& =0, T7%(0) +ngf =0,
DCy (0) - KCy'(0) + M[DTy(0) = DT1%(0)] = 0,

DT (0)[M(K—1)—G—yw] =DT+(0) [M(K—1) - G[n—yw?] (5.16)
—(K—1) (K+5) C{ (0) =0,
and Cif(z) >0, Ti(z)>0 as z->o0;
Ti*(z) >0 as z-> —oo. } (5.17)

We solve this problem in exactly the same manner as we did the eigenvalue problem for a, in
§ 4, obtaining the following equation for 4,:

by = (T'— po?) g(v? by) — K. (5.18)

The corresponding eigenvector has components

Cf (z) = M|o| (n+1) Dt exp { —iy(w? by) 2}/g(w?, by), & = D+, 5.19
Ti(z) = —Dtexp{—|o|z}, Ti*(z) = —nD"exp{|o|z}, } (5.19)
where iy (w?, by) = — 5+ (} + 0+ b,)* and D+ is a constant.
Since (5.18) for b, is the same as equation (4.14) for a, we conclude that
ag = by (5.20)

Note that completeness of both the original and adjoint eigenvectors would imply a, = b,. To
attempt to prove such completeness would be tangential to our present purposes, so we shall
regard (5.20) as an informal check on our work.

Thus FLHot] = agM o], Bt[ot(0)] =0, ovt(z) >0 as |z| >o0 (5.21)
and in (5.19) we can replace b, by a,. We now recall that the eigenvectors of the linear problem,
ZLlv] = ayA[v], B[v(0)]=0, v(z) >0 as |z]| > o0,

are given by (4.15) and use this to evaluate the normalization constant DD+ such that (5.6) will
be satisfied:

(tol, o) = [TPUZI) (7 put) M 0] (n+1) D exp{ =24 + 0t +ap)i 2}z
+w|w| (n+1)Dt =1, (5.22)
This implies that
DD 26(0*, ap) (1 +0*+ap)t 529

MK-1)|o| (n+1)[2(;+0*+ay)}— (T— o]’
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6. THE NONLINEAR STABILITY PROBLEM

In § 4 we examined the stability of the planar interface solution of the basic equations, (4.1) to
(4.4), to disturbances satisfying the linearized perturbation equations (infinitesimal disturbances).
In this section we investigate the stability of the planar interface solution to disturbances satis-
tying the full nonlinear perturbation equations ( finite amplitude disturbances).

Generalizing § 4, we consider solutions of the basic equations of the form of (4.6) where now

v'(x,2,8€) = 21 €, (%, 2, 1), (6.1)
—

with v,(x,2,t) = [C,(x,2,t), T, (x,2,¢8), T, (x,2,t), &, (%, 2,8)]. (6.2)
We wish to determine the spatial and time dependence of the quantities v,. In an attempt to
motivate the formal procedure which we shall follow, we substitute the type of solution introduced
above into boundary condition (4.35):
T(x66,t) = T"(x, 64, 1. (6.3)
We then obtain, using (4.5), (6.1), (6.2) and (6.3),

L+ M+ Gel + €Ty (x, 64, t) + €Ty (x, €8, 1) + €Ty (x, €4, 1) + ...
= 14+ M+Gne+eT(x, €, t) +€2Ty(x, €5, t) +€3Tg(x,€8,8) +.... (6.4)
Making use of the fact that © ,
ef(x,t;€) = 0+ 3 e, (%,0),
n=1

expanding the quantities 7;, and T, of (6.4) in Taylor series about z = ¢§ = 0, collecting terms of
like powers of € and equating these to zero, we obtain

o(1): 0=0, (6.5)

0(e): - Tq(x,0,1) = T1(x, 0,8) + §,(%,8) G(n— 1) [n = 0, (6.6)

O(e?): Ty(x,0,) — Ty(x, 0,1) + §(x, £) G(n— 1) [n = [dT3(x, 0,1) —dT3(x, 0, 1) ] &4 (x, 1), (6.7)

O(e%): Ty(x,0,8) — T5(x,0,8) + Es(x,t) G(n—1) [n

= [dT(x, 0,t) —dTy(x, 0,8)] Lo(%, £) + 3[d2T3(x, 0,8) —d?T;(x, 0,1)] £3(x, t)
+[dTé(x3 0, t) _djé(x, 0, t)] €1(x, t)a (6'8)

where d = 9/0z.

Note that (6.5) is satisfied identically, which is a consequence of ,(z) being an exact solution
of the basic equations. Also note that the left-hand sides of (6.6), (6.7) and (6.8) are of the same

form and that (6.6) is homogeneous while (6.7), (6.8) are inhomogeneous.
We assume

vy(x, 2, 1) = A(t) cos wxvy(2), (6.9)
where 01,(2) = [Ci1(2), T11(2), T11(2), &11), and A(t) is an unknown amplitude function such that
max |A(¢)] = 1.

t
Owing to the presence of nonlinear terms such as those in (6.7) and (6.8) it is not possible to make

use of the superposition principle. We therefore cannot expect that a study of (6.9) will allow us
to draw conclusions concerning an arbitrary periodic disturbance in x as it does with the linear
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problem. By examining the coswx spatial term we then determine the nonlinear stability
behaviour resulting from a disturbance consisting primarily of just this one component. Thus the
nonlinear analysis is not as general as is the linear one.

Placing (6.9) into (6.6) we arrive at

134,(0) = 71,(0) + £, G(n—1)/n = 0 (6.10)

upon cancellation of A4(¢) cos wx. Note that this is the same equation 73(z), 71(z) and ¢ satisfied
for the linear problem (equation (4.9)).
Substituting (6.9) into (6.7) we obtain

Ty(x, 0,1) = T5(%, 0,8) + &(%,8) G(n— 1) [n = 3[D T7,(0) — DT;,(0)] A2(2) (1 + cos 2wx).  (6.11)

It turns out that the inhomogeneous terms for all the O(e?) boundary conditions have the form of
the right side of (6.11) so we look for v,(#, z,t) of the form

0,y (%, 2, 1) = A%(t) [049(2) + Dg5(2) cOs 204], (6.12)
where from now on we use the notation
Vun(2) = [Cam(2)s Tum(2)s T'an(2); Saml.-
Substituting (6.9) and (6.12) into (6.8) and collecting terms we obtain
Ty(x, 0,8) — Tg(x,0,8) +L3(x,£) G(n— 1) [n = A3(¢) [ f1 cos wx +f; cos 3wx], (6.13)

where f3, f5 are functions of ©4((0), v,,(0) and v,,(0).
This leads us to look for v4(x, z,¢) of the form

v3(x, 2,8) = A3(2) [v5,(2) cos wx + 035(2) cos 3wx]. (6.14)
Thus from (6.9), (6.12) and (6.14) we deduce that
v(x, 2,t; €) = €A(t) v11(2) cos wx + €24%(t) [V54(2) + V5(2) cos 20x]
+€343(2) {03, (2) cos wx + v35(2) cos 3wx] + n§4e”A”(t) v,(%,2). (6.15)
Using (6.15) and being motivated by the forms of the five component vectors of § 5, we seek
solutions of the basic equations (4.1) to (4.4) of the form

g(x,2,t; €) = £o(2) +eA(t) g11(2) cos wx +62A%(¢) [ 820(2) + ga2(2) cOSs 204]

+6343(1) [ g32(2) cOs 0+ gy(2) o3 Box] + 3 enAn (1) g (x,2), (6.16)
n=4

where C(x,z,t; €) Co(2) Cy(2)
T(x,2,t;€) Ti(2) T(2)
gz t6) = | T'(x,z,55€) |, &(2) = | To(2) |, 8y(2) = | Ti(2) |, (6.17)
e6(x,t; €) 0 S
C(x,0,t; €) Co(0) C;;(0) |
and edA(t)/dt = e/i(t) = ayeA(t) —a,e343(¢) + §2an[eA(t)]2”+1. (6.18)

In order to motivate (6.18), we note that when (6.16) and (6.17) are substituted in the basic
equations the time dependence appears as €A(t) and powers of €4 (t). Hence it is natural to assume
an expansion for €4 (#) in powers of €4(t). Another means of motivating (6.18) is to note that in

35 Vol, 268, A,
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the lincar development of § 4, A(t) is such that eA(t)/eA(f) = o where o, the growth rate, is a
constant. For nonlinear stability we assume that o is a slowly varying time-dependent function
such that @

o(t) = ay+ n§1d"’€nAn(t)'

* There are no even powers of eA(t) in the expansion of ¢A(t) given in (6.18). If we assumed
a full power series expansion, solvability conditions for the systems to be developed below would
show that the coefficients of [e4(¢)]%%, K = 1,2, 3, ..., were zero.

For additional discussion of some of the finer points of this approach see Eckhaus (1965) and
Segel (1966). In introducing extra components evaluated at z = 0, we have followed Scanlon &
Segel (1967).

If use is made of (6.16) to (6.18), and the boundary conditions are expanded in a Taylor series
about z = e{(x,t) = 0, then there results after some tedious computation a set of differential
equations and boundary conditions for each €"; n = 1,2, 3. The system for » = 0 is satisfied
identically since g,(z) is the exact planar interface solution with components

Co@) =1+ (K1) [1—exp(=2)], Ty(2) = 1+M+Gz, Ti(z) = 1+M+GCnz, & =0,
We define the following operators v
(D% —p*w? + D) Cy(2)
(D2 —p?0®) Tjy(2)
Zpl8ii(2)] = | (D2 —p*0?) Ty(2) (6=0,1,2,..), (6.19)
nDT'(0) — DT;;(0)
DCy;(0) — (K—1) C(0) — (K—1) K&

Gii(2)
0
. T;;(0) — MCy;(0) + &[G + pPw?y — M (K —1)]
A= 0| BlE(0) - [ e o )
(K=1)&;

(p=0,1,2,..); (6.20)

and by g;;(z) - 0 as |z| - co0 we mean '
Cij(2), Tyy(z) >0 as z—>o0 and Ti(z)>0 as z-> —oo. (6.21)
Using these operators we can write the differential equations and boundary conditions for the

various orders of ¢ as follows:
For O(¢) one problem results proportional to A(t) cos wx of the form

Z1\[81(2)] = apH[ 811 ()], Bl[gll(o)] =0, ‘ (6.22)

g1(2) >0 as |z] > o0,
For O(e?) two problems result, one proportional to 4%(¢) and the other to 4%(¢) cos 2wx, of the forms
L[ 820(2)] — 200 A [ 820(2)] = 1[£0(0); £11(0)]; .
By[£20(0)] = h[80(0), g1(0)];  £e0(2) >0 as |z > o0, (6.23)

and Lyl 822(2)] — 200 M [ 855(2)] = b[£0(0), €11(0)];
B,[ 855(0)] = h[g,(0), 81:(0)]; g(2) >0 as |z| = oo; (6.24)
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respectively. In (6.23) and (6.24) b, r and h are vectors containing components of g,(z) and
g11(z) and their derivatives evaluated at z = 0. The explicit forms of (6.23) and (6.24) are given
in Wollkind (1968).

At O(e®) two problems result, one proportional to 43(¢) cos wx and the other to A43(¢) cos 3wx.
We shall only consider the first of these, which is of the form

0 0
0 0
L1181(2)] —3ag M[g(2)] +a, M [g11(2)] = a,| O [+| O |, (6.25q)
0 d,
d, dy
d
B\[g:(0)] = [dJ’ 8n(2) >0 as |z| > oo, (6.250)

where d; = d;[,(0), 811(0), 820(0), g25(0)], ¢ = 0, 1,2, 3, 4 (see Wollkind 1968). We shall investi-
gate each of these problems.
The O(e) problem

Except for notation the O(e) problem is the same as the linear stability problem. If one com-
pares the form of the operators in (6.22), as defined by (6.19) to (6.21), with those of the linear
eigenvalue problem of § 5 it will be seen that ¥, = %, # = .#, and B; = B. Thus (6.22) is an
eigenvalue problem for @, with associated eigenvectors g,,(z) and is identical in form to that of the
linear problem. Therefore g, satisfies (4.14), or

ay = (T - fo?) g(w? a5) - K, - (6.26)
with, as in (4.15), associated eigenvector g;,(z) = v4(z). Noting that
e§(x,t) = eDA(t) coswx+0(e?) as e€->0,
we wish to normalize in such a manner that e is the coeflicient of cos wx to any order of e. We
require
. 1| E
max |e{(x,t)|,, =€ where |e{(x,1)|, = lim —U el(x,t) cos wxdx|; (6.27)
t L—>o© L —L .
this implies that D = 1. We now choose for g, that root of (6.26) such that for 7" > T, g, > 0.
- Since (6.22) is equivalent to the linear eigenvalue problem, the adjoint problem for (6.22) is
equivalent to the adjoint eigenvalue problem of § 5. In what follows we will designate £+, B+

and @+(z) of that section by £, Bf and g{(z) respectively. Note that the associated adjoint
eigenvector gj;(z) is given explicitly by (5.19).

The O(€?) problems

First we consider the system (6.23) for the so-called mean motion terms at order e2. The
quantity €24%(f) g,(2) represents the alteration of the mean of the basic solution due to the type
of perturbation of § 6. Writing out the differential equations for g,,(z) we obtain

[D2+D —2a,] Cyy(2) =0, D2Ty(z) =0 for z> 0 D2T4(z) =0 for z< 0. (6.28)
Equation (6.28) has solutions :

Cole = e, mo=ielirmall ) (6.20)

Goo = Dyy,  To(2) = Byoz+Cog,  T'39(2) = Byoz+Cyy, '

35-2
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370 D.J.WOLLKIND AND L.A.SEGEL

where n, has been chosen to satisfy Cyy(z) = 0 as z — + 00 and Ay, Byg, Cag, Bogs Ca and Dy, are
constants. We also must satisfy the conditions 7,y(z) — 0 as z— + oo and Tyy(z) - 0 as z > — 0.
Before we consider them however, we shall examine the boundary conditions at z = 0. We obtain
upon substitution of (6.29) into these boundary conditions the following:
Mgy — Coo+ Dyg[M(K — 1) = G] = §M(K = 1) [§ = mo(T - fo?)] + || G(n—1)[2(n+ 1), (6.300a)
nBjy— By, = 0, (6.300)
[+ K — 1] Agy+ Dpg[ (K — 1) (24 + K]
=3(K=1)[K—2¢y(K=1)] +}[(K=1) (T o) {(K—1) ag—mog + %], (6.30¢)
Coo— Cho+ Dyl (n—1) Gn] = — |0| G(n—1)?[2n(n+1). (6.304)
In order for the solution of (6.29) to satisfy the remaining boundary condition as |z| = oo it
would be necessary for
' B,y = Cyy = By = Cgy = 0. (6.31)
If we assume that (6.31) is true, the four equations of (6.30) will reduce to three equations
((6.300) is satisfied identically) in the two unknowns 4,, and D,,. If this procedure is to be valid,
the reduced system must be consistent to O(1). Later we shall show that

a, = O(e?), (6.32)
hence Agg(ag) = A50(0) + O(€2), Dyg(ay) = Dyy(0) + O(e?). i (6.33)
Noting that ny+K—1= K+ 0(a,), (6.34)

and neglecting all terms proportional to ¢, in (6.30) we obtain
MAg(0) +Dyy(0) [M(K —1) = G] = M (K ~1) [§ = my( T~ feo)] + || G(n~1)[2(n + 1), (6.35a)
KAy(0) +Dyo(0) [(K—1) K] = K(K—1)[4+3[(K—1) (T - fo?) (0*—myg)], (6.350)
Dy, = || (1—n)[2(n+1). (6.35¢)
In the above, such conditions as m, = my(w? a,) and g(w? a,) are to be understood, when con-
tained in (6.35) and (6.36), as evaluated at g, = 0. Solving for 4,,(0) and D,y(0) from (6.35a) and

(6.3550) we find that

| A(0) = |0 (n=1) (K=1)[2(n+ 1) + (K~ 1) ~Ymo(K 1) (T~ o), (6.36)
Dy(0) = |w| (1 —n)[2(n+1), (6.37)
where use has been made of the relations g = my+K—1 and mi—my—w? = 0. Thus system

(6.35) is consistent.
g20(2) has components to O(e?)

Coo(2) = Agy(0) €77 To(z) =0, T3p(z) =0, &y = Dyy(0), (6.38)
where 4,,(0) and D, (0) are given by (6.36) and (6.37). The mean of g(x, z, ; €) is given by

llm 2Lf g Xy 2, t 6) dx = go(z)+62g20(x) +0(€4)’

as mentioned at the start of this section. From (6.38) the mean of the temperature gradients for
the liquid and solid at z = 0 are given to O(e?) by G and G/n respectively, while the mean position
of the interface is now at

2 = A2(t) Dyy(0) = A2t |w| (1—n /2(n+1) (6.39)
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Since z ~ 2, the quantity on the right of (6.39) is negative. Thus a nonlinear effect is that the
mean position of the interface lags behind its position of z = 0 as determined by linear theory.
The second O(€?) system is that given by (6.24) for g,,(z). g,,(z) has components:

Coa(2) = Agp 0%, py = 3+ (14 40 + 24,)3, }

, : (6.40)
Tyy(2) = Byge 2wz, Thp(2) = Cpa€®l%, £y = Dy,

As in the system for g,4(z) we note that
[A2, Boo, Cans Dao] (ag) = [Aaas Bans Cas, Daa] (0) + O(€?).

For explicit values of these constants see Wollkind (1968).

The O(e3) problem

As mentioned earlier in this section we shall only consider the problem for g;,(z) given by
(6.25). Applying the usual Fredholm conditions (Ince 1956) to this problem we take the inner
product of (6.254) with the adjoint eigenvector

ghi(2) = [CGii(2), Tik(2), Tid (2), &, G (0)] (6.41)
and obtain
(Z1[81(2)], 8ii(2)) — 3ao(A[g51(2)], 811(2)) + ar (A [811(2)], 811(2))
= aydyC1i(0) +dy i +d5 C14(0).  (6.42)
We recall that : . ,
LT84(2)] = a, A*[g11(2)], (A[gu(2)]; g1i(2)) = 1. (6.43)
Integrating by parts and using (6.255) one can show that

(Z1[831(2)]; g11(2)) = &y DTH5(0) — (dy—dy) DT (0) + (&au(2), LA [81(2)]). (6.44)
By substituting (6.44) into (6.42), making use of (6.43), and noting that
(A [€1(2)]; £11(2)) = (€a1(2),# [ €01(2)])s
we obtain
—[2(A[gn(2)], 811(2)) +4,Cii(0)] ag + &4
= —d\ DT1i(0) + (dy— dy) DT1{ (0) +dp Gy +d3 G (0) = Sy (6.45)

Taking the limit of (6.45) as T'— T and w — g, and making use of the fact that in the above
limit a, - 0, we arrive at the following determination of a,:

a4 = I!ilgosal = 1!13111 {—d\ DT1§(0) + (d, — dy) DT (0) +dy &y + d5 C1 (0) }. (6.46)
> —To
W—>w0o W—>wo

We find after some é,lgebra
Sp = DF || {[}M (K1) (1-K/g) +2|w| (1—1) G/(1 +n)*— M (K —1) 0*(T - f*) [g] Dy,
—§[3ywt+ M(K—-1) {1 - K|g — 20°mo(T - f*) [g}]
+M[3po(1—2g) + 0*[g] Apa+ M (K —1) (1-K[g) Dyo+ M(1 - K]g) Ao}, (6.47)
where § = p,+ K —1.
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372 D.J.WOLLKIND AND L.A.SEGEL

We thus arrive at the following expression for the Landau constant, a,,

a = 2g(3 + ) [2(3 + 0) — (To— pud) | H{[(To — 4fuwe) § — K]
X ([3(1 = K[g) + (n—1) wo(1 = T5) [(1 +n) — wg(To — pet) [g] [ - 1K
+§(mog + ) (To — pl) + 8t — tmy(To—~ poi)}]
+[300(1 —2/g) + W /gI{[1K — §(mog + w}) (1o — fuwe) ] [T — 4pwi]
+ K[ =} +3m(To — foip)1}) + $[2086m(Ts — fug) [g] — 3fwt
+ (1= K/g) [} — 4my(T5 — foi) 1}, (6.48)
where quantities such as [g, mq, 2, p,] (02, a,) in (6.48) are understood to be evaluated at w = wg
and ¢, = 0.
With the value of ¢, chosen as in (6.48), which was determined from the solvability condition

for system (6.25), we can find a particular solution denoted by g{’(z) which satisfies (6.25). The
total solution of (6.25) is then

8n(2) = gi0(2) + gD (2), (6.49)

where the complementary solution denoted by g{{(z) satisfies (6.25) for homogeneous conditions or

Z,[g§0(2)] — 8a, A [(2)] = 0, - (6.504)

B,[g&(2)] = 0, g{(z) >0 as |z| > oo. (6.500)

For the O(e?) systems we implicitly assumed g5§’(z) = gi§’(z) = 0. Note in this system that

except for the presence of the ‘3’ in (6.504), (6.50) is identical with the O(¢) problem. It therefore
has a solution g{{’ with components

6P =G, CP(2) = C1=K) (T~ fot) et s,
T§(z) = C(1—n) Gre /(1 +n), T (2) = C(n—1)et?/n(1+n).

To satisfy (6.27) we must take C = — &P,

7. THE AMPLITUDE EQUATION

The equation which the amplitude function A4(¢) satisfies to order €3 is
eA(t) = ageA(t) —a, e343(2). (7.1)

In order to investigate the stability of the planar interface solution to the type of perturbations
of § 6 we must examine the behaviour of A(¢) as ¢ - co. We shall consider (7.1) in the form

3 S (ed)® = ay(ed)— ay(ed)t = £ (4). (1.2)
We shall consider the four cases represented by the possibility of a,, the growth rate, and 4, the
Landau constant, being either positive or negative. We shall examine the critical points of (7.2),
i.e. those 4, such that f(4,) = 0—and determine their stability in the respective cases.

These cases are portrayed schematically in figure 5 in which d (e4)?/d¢ is plotted against (¢4)2.
The arrows denote how an initial disturbance will behave as time increases. The cases are as
follows: ' ‘

(a) ay > 0,a, > 0. In this case d(e4)?/dt = 0 where (e4)? = a,/a,. By studying (a) of figure 5 it
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NONLINEAR STABILITY ANALYSIS 373
can be seen that this is a stable equilibrium solution. Another way to show this is to consider the
solution ede = (ag]ap)}, (7.3)
and do a local linear stability analysis of it by substituting

eA(t) = ede+ed’' (1), (7.4)
into (7.1) and neglecting all but linear terms in A4’(¢). We then obtain
d[(ed’()]/dt = — 2a,ed’ (), so eA'(t) = eA’(0) e~2t, (7.5)
(a) (®)
(j(_g/ti)_z >0, a,>0 d(eAy a,>0, a,<0
de

equilibrium

t (e4)? instability

s (cAy
) @
ded) 4, <0, a; <0 d(LA)_ <0, a;>0
dt dz.
/ stability

subcritical instability -

L ‘_-)/' - ra (EA)Z
(eA4)?

Ficure 5. A plot of d(e4)?/dt against (€4)2, showing the four possible
qualitative behaviours of solutions to (7.1).

A’ approaches zero as ¢ - oo, showing that (7.3) is a stable equilibrium solution. Since
ay > 0(T > Tp),

linear theory would predict instability, whereas a nonlinear analysis shows the existence of a
[finite amplitude stable equilibrium solution. _
(b) ay > 0, a; < 0. There is no finite dmplitude equilibrium solution and from figure 5 it can be
seen that the nonlinear effects act to reinforce the destabilizing tendency shown by linear theory.
(¢) ay < 0, a, < 0. Here

d(ed)?/dt = 0 - where (ed)? = ay/a, > 0.

From figure 5, or by doing a local linear stability analysis as in (a), it can be seen that this
equilibrium solution is unstable. This case is said to show subcritical instability of the unperturbed
state 4 = 0. The reason is that for T" < T, (since 4, < 0), where linear theory predicts stability
to infinitesimal disturbances, nonlinear theory shows that the solution 4 = 0 is unstable to finite
amplitude disturbances whose magnitude €4 satisfies €242 > a,/a,.

(d) ay < 0,a; > 0. Asin (b) there is no finite amplitude equilibrium solution but from figure 5
it can be seen that the nonlinear effects act to reinforce the stabilizing tendency shown by linear
theory.
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374 D.J. WOLLKIND AND L.A.SEGEL

In order to analyse the stability of the planar interface solution to finite amplitude perturba-
tions we must determine the signs of g, and ¢, in the amplitude equation. In § 4 we showed that

ay, >0 for G < G, a,=0 for G =G, ay <0 for G > G, (7.6)

where G = Gg(y) is the marginal curve as represented in figure 4.

Thus we need only analyse the expression for @, given in (6.48). We note that for a given alloy
with fixed concentration the parameters appearing there either determine w¢ (such as ) or are
determined by it (such as T¢, g, &, my, py, M,). Thus @, can be thought of as a function of wg.

TaBLE 1. REsuLTs, FOR K = 0.2, OF a; AND yM~1 AGAINST wg

We ay vIM

10 —390 8.47x 10-°
8 —196 1.68x 10—4
6 —80.1 4.06x 10—4
4 —22.2 1.43x 103
2 —-2.19 1.25% 10-2
1 —0.153 0.107
0.9 —9.51x 10—2 0.146
0.8 —5.35% 102 0.205
0.7 —2.54%x 10—2 0.296
0.6 —8.14x 10-% 0.443
0.5 9.09% 10— 0.683
0.4 4.21x 10-3 1.08
0.3 4.06x 102 1.71
0.2 2.39x 103 2.61
0.1 7.01x 10— 3.56

However, since o is a function of 7y, then @, can be thought of as a function of y. We wish to
know the value of a, for different w¢ and for a number of values of K. To compute a, we used
a computer and evaluated g, for wg = 10 to 0.1 by tenths and from 0.1 to 0.01 by hundredths.
We did this for K = 0.1, 0.2, ..., 0.9. A sample of the results of this computation is given in table 1
and corresponds to K = 0.2. We define f so that

a, >0 for o< 0f; a, <0 for wg> 0. (7.7)
If yo = y(w§) is the corresponding value of vy, then

a, >0 for v >vyg a4 <0 for vy <y (1.8)
From table 1, when K = 0.2,
0.5 < w§ < 0.6, 0.44M < y5 < 0.68M.

The behaviour of g, for different values of K is similar to that for K = 0.2 (see table 2).

TABLE 2. THE VALUES OF W§ AND 7 FOR DIFFERENT K

Note. The numbers on the left and right of the 2nd and 3rd columns give, for different K
values, upper and lower bounds for w§ and yo M~ respectively.

w§ Yol M

K f——A‘_———‘\ s A N
0.1 0.3 0.4 1.2 2.3

0.3 0.6 0.7 0.28 0.40

0.4 0.7 0.8 0.18 0.24

0.5 0.8 0.9 0.12 0.15

0.6 1.0 1.1 5.8x 10-2 7.2x 10-2
0.7 1.1 1.2 3.6x 10-2 - 4.4%x 102
0.8 1.3 1.4 1.7% 102 2.0x 10—2
0.9 1.5 1.6 6.2x 1073 7.3x 103
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We plot the marginal curve for gy, G = Gy(y), and also the ‘marginal curve’ for a;, y = v,
on the same graph (see figure 6). This then separates the y — G plane into four regions, each
corresponding to one of the cases presented above. Figure 6 is drawn for K = 0.2 where

Yo =0.7p(p = M (K~1) = 4|m| G/5Tyy), § = 0.55, } (1.9)
Go(ye) = Go = [1—yc08p — K|g(0? 0)] (1+n) p/2 = 0.3(1+n) p/2. '
e Ut I
region D
(excluded)

G—

(@

region of
subcritical
instability

region of
cellular structure

W
Ve ) Yk Ye=p|K

e

F1cURE 6. A plot of G against y showing the regions corresponding to the cases given in the text for the
four possible combinations of sign of g, and ¢, in the amplitude equation (7.1).

For our present nonlinear analysis to be valid, 4, must be real. For T > T, a, is always real.
A sufficient condition to ensure that g, is real for 7" < T, is that

Wy > K or Y <Yk = @(YYE,O)—_{(G:;K{);‘ (7.10)
Hence in figure 6 we have excluded region D, where ¥ > yg and G > G¢(y). This region corre-
sponds to the possibility of @, being complex, and is comparatively uninteresting, so we have not
felt it worth while to include it by making the required extension of our nonlinear analysis.

We now examine the physical behaviour in each of the regions:

(a) ag > 0, a; > 0. This is the finite amplitude stable equilibrium case. Since we have dealt

only with a one-dimensional disturbance to the planar interface
e§ = eA(t) coswx+...

we can only conclude that stable bands, a one-dimensional periodic structure, can be present in
this region. However, in cellular convection driven by gravity (Segel 1966) or surface tension
(Scanlon & Segel 1967) a two-dimensional analysis has shown that stable hexagons existed where
a one-dimensional analysis predicted bands. It is observed that for dilute alloys under the proper
conditions the planar interface solution becomes unstable and a transition to domed-shaped
regular five- or six-sided cells occur. To demonstrate conclusively that this is the cellular region it
would be necessary to carry out a two-dimensional analysis and thereby show the existence of
stable hexagons. At present, due to the analogy with cellular convection, we tentatively (but with
some confidence) refer to the region where 4, and a, are positive as the cellular régime.

36 Vol. 268. A,
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376 D.J.WOLLKIND AND L.A.SEGEL

(b) ay > 0, a; < 0. This is the region where the planar interface solution is unstable to
infinitesimal disturbances. Finite amplitude effects enhance disturbance growth.

(¢) ay < 0,a, < 0.Thisis the region of subcritical instability. It may well correspond physically
to dendritic growth. O’Hara (1966) put forth two criteria for what he termed metastable growth
of dendrites. These were that the planar interface be stable by linear stability considerations
(ay < 0) and that G < p = M(K—1). The region in this sector which corresponds to these

criteria, namely _
0.45p = Gg < G < p, (7.11)

has been shaded in figure 6. (We have taken n = 2, an excellent approximation in most
situations.)

(d) ay < 0, a, > 0. This is the region where the planar interface is stable to both infinitesimal
and finite amplitude disturbances.

R=0.7p2
region D
~ (excluded)
region of
_subcritical
? instability
g @
)
/ region of
cellular structure
/ (@) =0
4
Yo ¥k y*
y=vVr|D

FIGURE 7. A schematic plot of R against y. R = Gy = G*I'/ Ty has the advantage of being a dimensionless
temperature gradient independent of V. The regions are to be interpreted as in figure 6.

Recall that G = G*D/[T, V and y = VI'/D. Since G is a function of V it might be useful to
consider a dimensionless quantity containing G* that is independent of V. For this purpose we
define

, R = Gy = G*I'[Ty. (7.12)
We plot schematically R against y for K = 0.2 in figure 7. For this case

Yo = 0.7p, Ro=Goyo=0.32p% R(y) = vGo(y). (7.13)

The regions in figure 7 are to be interpreted just as they were for figure 6. Note that G = p
transforms into R = py. This type of plot is an aid to experimentalists since R is proportional to
G* and vy is proportional to V for a given alloy.

As an example, we now specialize our results so that they apply to a particular dilute binary
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NONLINEAR STABILITY ANALYSIS 3717

alloy, the tin-lead system. It has the following values for relevant parameters (Rutter 1957;
Mullins & Sekerka 1964):

Ty =505K, K=0.2, m=—2K per weight 9, lead,
D =5%x10"%cm?fs, I'=10"%cm, n=2. (7.14)

VI,

From (7.9), yo = 0.7p. Using § = v/p we find S5 = 0.7. Hence for this alloy

(VlG)e = 11 A P'i:lqu)/:;""wt. ) , (7.16)

where as above, a subscript C on a quantity refers to its critical value. For a given concentration,
Cos then Vo = 11C, cm}s, (7.17)
Ry = Goyg = 0.32p2 = 0.32[mC,y(K — 1) [Ty]2
To put this in dimensional form we recall from (7.12) that R = G*I'|Ty; thus

GE = 0.32m2C3(K —1)2/I'Ty, = 1.6 x 105C} K /cm. (7.18)

For C, = 0.01%, Pb then ¥, = 0.11cm/s and G§ = 16 K/cm. Using these values we note that
subcritical instability will occur for finite amplitude disturbances whose magnitude, ¢, satisfies

€2 > 6x10-2(G* —GP). (7.19)

Earlier we stated that it would be shown that a, = O(e?). In this section we investigated the
amplitude equation to O(e®) and arrived at the following equilibrium solution when a,, a, > 0:

ede = (aylay)*.

It can be shown that 4(¢) increases monotonically. Since we made the convention max |4(¢)]| = 1
we must have 4¢e = 1 and t
el2a, = ap. (7.20)

All our analysis has tacitly assumed that ¢, = O(1) with respect to e. We now consider one
further term in the amplitude equation or

ed(t) = ayA(t) € — a,343(t) — aye545(%). (7.21)
In order to have neglected the €345(¢) term of (7.21) in our previous work it is necessary that
le]? < ay/a,. (7.22)
Equations (7.20) and (7.22) together imply the condition .
ay < aifa,. (7.23)

Computation of a, is a formidable task so we shall limit ourselves to the statement that the
relation a, = O(T— Tg) indicates that our calculations will be valid when the imposed temperature
gradient is sufficiently close to its critical value.

36-2
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8. DiscussionN

Our two major nonlinear results are that:

1. The interface can be unstable to finite amplitude disturbances when linear theory predicts
stability to infinitesimal disturbances. This is called subcritical instability and is closely con-
nected with the possibility of dendritic growth.

2. Cellular structure can be anticipated for certain ranges of parameter values.

A nonlinear effect shown by our analysis is that when the temperature gradients in the solid
and liquid at infinity are required to remain the same as the gradients of the basic solution, then
the mean position of the interface lags behind its position in unidirectional freezing.

Comparing our analysis with previous work we first note that the original (Tiller & Rutter
1956) qualitative supercooling criterion for instability, G* < mG,, becomes in our non-dimen-
sionalized variables either

G<p=MK~-1) or R<py. (8.1)

Our linear theory results, arrived at by a standard linear perturbation analysis of the full-time
dependent equations, are equivalent to those obtained by Mullins & Sekerka (1964) using a
‘steady-state’ approximation. In order to show this we recall that their stability criterion was

nG'* + G

Transforming into dimensionless variables and making use of 2G’ = G we obtain

2G
M (K—=1) (1+n)

- W > %4, K). (8.3)

We now observe that & (4, K) is equal to what we have called W (£) and that 4 = Kf. Hence
our linear stability criterion is equivalent to (8.2).

Mullins & Sekerka arrived at their criterion by assuming time dependence of the form § = &(¢)
and neglecting time derivatives except in {;. They then determined their stability criterion by
setting §/0 = 0. Thus they calculated the marginal condition for instability by tacitly assuming
exchange of stabilities which we have demonstrated in §4. Their analysis is correct for the
marginal case. Their work on maximum growth rates is incorrect since the time derivatives in
the diffusion equations are neglected. When £ is small, this is permissible in the temperature
equations but it is never permissible in the concentration equation.

Sekerka (1967) and Delves (1966) reworked the problemfor time dependent diffusion equations
by using transform techniques. We have used a normal mode or separation of variables approach.
The normal mode method analyses the discrete or point spectrum of the linear problem while
transform methods analyse the continuous spectrum and the point spectrum. From the work of
Sekerka (1967) and Delves (1966), however, it can be concluded that for this problem one can
predict the onset of instability by determining where the point spectrum eigenvalues g, satisfy
Re (a,) > 0for a disturbance proportional to e%f, Thus we say that the normal modes, considered
here, are the ‘most dangerous’ modes.

Let us examine our predicted regions of cellular structure and subcritical instability in the
light of previous results. As stated earlier, O’Hara’s criteria for dendritic structure for con-
strained crystal growth are in our notation

ay <0, G<M(K-1). (8.4)
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In figures 6 and 7 this region is shaded in the area of subcritical instability (a, < 0,4, < 0). We
observe that the second condition of (8.4) is merely the old constitutional supercooling criterion
for instability. Supercooling is expected to be destabilizing and the additional factors of curvature
and temperature gradients, are expected to be stabilizing. It is thus not surprising that a finite
amplitude disturbance chiefly confined to the concentration might result in an instability where
linear theory predicts stability to infinitesimal disturbances (for which normal mode concentra-
tion disturbances are inevitably accompanied by disturbances of the same magnitude in all other
variables).

o
/

— — —— ——

60° W=

Ficure 8. The formation of a hexagonal cell from three rolls. Note that the width of a roll,
W, is equal to the diameter of the cell, 4.

The typical diameter of a cell on the interface between the two phases of a dilute binary alloy
ranges from 60 to 90 um (Tarshis 1967). It has been found in nonlinear studies of the Bénard
problem that cells exhibit a width similar to the wavelength associated with the critical wave
number. We note that hexagons are made up of the superposition of three bands meeting at 60°
and their diameter coincides with the width of a band (figure 8). In our analysis we have shown
that Ag, the critical dimensional wavelength of a roll, is such that

Ao = %D/V:f(l/). (8.5)

From our analysis in § 7 for an alloy with K = 0.2 the maximum wavenumber at which one can
have cellular structure is w& = 0.55. In the case of the particular alloy handled in § 7,

D|V =5x10"%cm;

hence the dimensional wavelength corresponding to this is

2
X% = (0_1;5) (5x10~%) cm = 57 x 10~4cm = 57 pum, (8.6)

which compares favourably with the 60 um lower cellular limit mentioned earlier. The maximum
Ag for which cellular structure can occur by our analysis is A + c0(wg = 0). This corresponds to
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380 D.J.WOLLKIND AND L. A.SEGEL

a very large value of V. The maximum observed A is presumably associated with the largest
experimentally feasible value of V.

To recapitulate, we have considered a nonlinearized version of the Mullins and Sekerka
mathematical model for the constrained growth of a dilute binary alloy. We have carried out a
systematic linear stability analysis of the planar interface solution by a normal mode approach.
We have used a nonlinear stability analysis of a Stuart-Watson nature (Segel 1966) and expect
this to be asymptotically valid as G - Gg. Our principal results are predictions of subcritical
instability and equilibrium cellular structure.

The work done on this paper was largely completed while one of us (D. J. W.) was a graduate
student in the Department of Mathematics, Rensselaer Polytechnic Institute, and was partially
supported by funds from the Army Research Office (Durham) and the National Aeronautics and
Space Administration. The authors wish to thank Dr Lemuel Tarshis of General Electric for his
explanations and helpful suggestions on the physical metallurgical aspects of this problem and
Dr Lester Rubenfeld of Rensselaer Polytechnic Institute for his comments concerning the complex
nature of the growth rate. An abstract of this work appeared in Frank ez al. (1968).
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